科学

近红外光谱和机器视觉信息融合的土壤含水率检测

admin2022-12-15 07:11 54人已围观 下载完整内容

简介为了精确、快速和稳定测定土壤含水率以及扩大所建模型的适应性,该文提出了机器视觉与近红外光谱技术融合的土壤含水率分析方法。通过试验建立了湖北地区主要土壤基于近红外

为了精确、快速和稳定测定土壤含水率以及扩大所建模型的适应性,该文提出了机器视觉与近红外光谱技术融合的土壤含水率分析方法。通过试验建立了湖北地区主要土壤基于近红外光谱的土壤含水率分析模型、基于土壤表层图像特征参数的含水率分析模型和机器视觉与近红外光谱信息融合的土壤含水率分析模型。结果表明,基于近红外光谱含水率分析模型虽然具有较高的精度,但该模型预测非建模样品黄绵土误差均大于4%;以图像特征参数H,S和V所建BP人工神经网络非线性预测模型最优,模型的决定系数R2为0.9849,但当土壤水分饱和(达到20%以上)时存在分析误差;而所建立的土壤的近红外光谱与机器视觉BP神经网络信息融合模型可预测非建模样品黄绵土与水分饱和达20%以上土壤,决定系数R2可达到0.9961,融合模型分析精度均高于单独使用近红外光谱或机器视觉分析模型。

  • 微信公众号

下载完整内容

文章评论


评论0

    站点信息

    • 微信公众号:扫描二维码,关注我们