科学

动态调整粒子群-霍尔特模型在径流预测中的应用

admin2022-12-15 19:09 63人已围观 下载完整内容

简介为了提高水库和河流中长期径流预测精度,针对粒子群算法存在的缺陷,提出了动态调整粒子群算法(DAPSO)。借助霍尔特-温特斯线性季节性模型的预测功能,应用DAPS

为了提高水库和河流中长期径流预测精度,针对粒子群算法存在的缺陷,提出了动态调整粒子群算法(DAPSO)。借助霍尔特-温特斯线性季节性模型的预测功能,应用DAPSO算法求解和优化霍尔特-温特斯线性季节性模型组合参数,形成动态调整粒子群-霍尔特-温特斯线性季节性模型组合算法,对石泉水库进行中长期径流预测。仿真计算表明,动态调整粒子群-霍尔特-温特斯线性季节性模型算法收敛速度快于霍尔特-温特斯线性季节性模型算法、粒子群-霍尔特-温特斯线性季节性模型算法。该组合算法克服了按梯度试算法搜索质量差和精度不高的缺点,输出稳定性好,预报精度显著提高,置信度为95%时的预测相对误差小于6%。该算法可应用于水库和河川中长期径流预测。

  • 微信公众号

下载完整内容

文章评论


评论0

    站点信息

    • 微信公众号:扫描二维码,关注我们