科学

利用地形和遥感数据预测土壤养分空间分布

admin2022-12-15 17:27 88人已围观 下载完整内容

简介在GIS支持下,选择地形因子和遥感植被指数,建立土壤养分空间分布预测模型,应用回归克里格(Kriging)方法,预测吉林省农安县土壤养分(有机质和全氮)的空间分

在GIS支持下,选择地形因子和遥感植被指数,建立土壤养分空间分布预测模型,应用回归克里格(Kriging)方法,预测吉林省农安县土壤养分(有机质和全氮)的空间分布。结果表明,11个环境因子中,相对高程、坡度、地形起伏度、坡度变率、归一化植被指数(NDVI)与土壤有机质和全氮含量均具有显著的相关性。地面粗糙度和地形湿度指数与有机质具有显著相关性,而与全氮的相关性不显著。相对高程、坡度、地面粗糙度、河流动能指数以及NDVI在土壤养分的多元回归预测模型中贡献较大,是预测土壤养分空间分布的最优因子。有机质和全氮在研究区的空间分布格局呈现由东南向西北逐渐减少的趋势,这种分布格局受地形和植被的综合作用,同时与土壤类型密不可分。精度检验结果表明,回归克里格方法能够提高土壤养分空间分布预测精度,是一种有效的空间分布插值方法。

  • 微信公众号

下载完整内容

文章评论


评论0

    站点信息

    • 微信公众号:扫描二维码,关注我们