报告

基于ODR-DASYN-SVM的极端金融风险预警研究

admin2022-12-09 18:19 87人已围观 下载完整内容

简介针对合成少数类过采样(synthetic minority over-sampling technique,SMOTE) 方法在提升支持向量机(support

针对合成少数类过采样(synthetic minority over-sampling technique,SMOTE) 方法在提升支持向量机(support vector machine,SVM) 的非均衡样本学习能力中出现的过拟合(over fitting),引入自适应合成抽样方法(adaptive synthetic sampling approach,ADASYN) 和逐级优化递减欠采样方法(optimization of decreasing reduction,ODR) 分别克服SMOTE 在生成新样本中的盲目性和在处理对象上的局限性,进而与SVM 相结合,构造出改进SVM,即ODR-ADASYNSVM模型来预测中国极端金融风险; 最后运用T 检验对各模型预测精度的差异性进行显著性检验以及对各模型的预测稳定性进行评价. 实证结果表明,ODR-ADASYN-SVM 模型不仅能够显著地提升SVM 的非均衡样本学习能力,同时也能够有效地克服SMOTE 的过拟合,从而展示出优越的极端金融风险预测性能.

  • 微信公众号

下载完整内容

文章评论


评论0

    站点信息

    • 微信公众号:扫描二维码,关注我们